Выясняем, как рассчитать систему отопления

Расчет труб отопления и системы в целом заключается в определении тепловой мощности, выборе диаметров всех трубных элементов (гидравлический расчет), определении размеров отопительных приборов (тепловой расчет) и подборе оборудования.

Как посчитать расход теплоносителя

Расчет литража теплоносителя производится так:

V труб= S × h,

где S – это площадь отверстия трубы,

Формула для расчета площади отверстия выглядит так:

S = π × r².

Как посчитать расход теплоносителя

Здесь π – постоянная, которая равняется приблизительно 3,14, а r – это радиус отверстия трубы, для простоты измерений лучше пользоваться диаметром, который в 2 раза больше радиуса, тогда расчет будет выглядеть так:

S = 3,14 × (d/2)².

Чтобы выяснить, сколько литров жидкости необходимо, необходимо применить формулу:

V = 3,14 × (d/2)² × h.

Например, для элемента диаметром 25 мм и длиной 20 м цифры будут такими:

V = 3,14 × (0,025м/2)² × 20м = 0,0098 м³ = 9,81 л

В системе отопления используются элементы разного диаметра. В таком случае нужно будет производить расчет для каждого отдельно, а потом сложить полученные цифры, затем приплюсовать литраж жидкости в радиаторах и литраж воды в котле. Если в системе отопления находится и расширительный бак, то его объём тоже надо будет добавить.

Расчет общего объема жидкости будет иметь такой вид:

Vобщий = Vкотла  + Vрасширительного бачка + Vвсех радиаторов + Vтруб Ø25 + Vтруб Ø 50

Как посчитать расход теплоносителя

Данные об объеме котла, расширительного бачка и секций батарей можно взять из технических паспортов изделий или посмотреть в интернете. Если расширительный бачок самодельный, то его объём высчитывается так: V = 3,14 × (d/2)²× h. Объем труб считается по формуле.

Важно! Количество циркулирующей воды существенно не влияет на снижение расхода топлива или электричества. Меньшее количество теплоносителя позволяет быстрее прогреть помещение, а большее – дольше сохранять тепло при выключенном котле.

Чтобы уменьшить расход воды можно прибегнуть к нескольким способам:

Расчет тепловой мощности системы отопления

Тепловая мощность системы отопления — это количество теплоты, которое необходимо выработать в доме для комфортной жизнедеятельности в холодное время года.

Теплотехнический расчет дома

Существует зависимость между общей площадью обогрева и мощностью котла. При этом, мощность котла должна быть больше или равняться мощности всех отопительных приборов (радиаторов). Стандартный теплотехнический расчет для жилых помещений следующий: 100 Вт мощности на 1 м² отапливаемой площади плюс 15 — 20 % запаса.

Рассмотрим в качестве примера дом площадью 120 м². В данном случае мощность котла должна составлять: 100 Вт × 120 + 15 % = 13800 Вт = 13,8 кВт. Если котел (двухконтурный) будет использоваться и для горячего водоснабжения, то его требуемая мощность должно быть увеличена соразмерно предполагаемому расходу подогретой воды.

Расчет количества и мощности приборов отопления (радиаторов) необходимо проводить индивидуально для каждого помещения. Каждый радиатор имеет определенную тепловую мощность. В секционных радиаторах общая мощность складывается из мощности всех используемых секций.

В несложных отопительных системах приведенных способов расчета мощности бывает достаточно. Исключение — здания с нестандартной архитектурой, имеющие большие площади остекления, высокие потолки и другие источники дополнительных теплопотерь. В этом случае потребуется более детальный анализ и расчет с использованием повышающих коэффициентов.

Теплотехнический расчет с учетом тепловых потерь дома

Расчет тепловых потерь дома необходимо выполнять для каждого помещения в отдельности, с учетом окон, дверей и внешних стен.

Более детально для данных теплопотерь используют следующие данные:

  • Толщину и материал стен, покрытий.
  • Конструкцию и материал кровельного покрытия.
  • Тип и материал фундамента.
  • Тип остекления.
  • Тип стяжек пола.

Важно учитывать наличие в ограждающих конструкциях теплоизолирующего слоя, его состав и толщину.

Для определения минимально необходимой мощности отопительной системы с учетом тепловых потерь можно воспользоваться следующей формулой:

Qт(кВт×ч) = V × ΔT × K ⁄ 860, где:

— тепловая нагрузка на помещение.

V — объем обогреваемого помещения (ширина × длина × высота), м³.

ΔT — разница между температурой воздуха вне помещения и необходимой температурой внутри помещения, °C.

K — коэффициент тепловых потерь строения.

860 — перевод коэффициента в кВт×ч.

Читайте также:  Какие батареи отопления лучше для частного дома

Коэффициент тепловых потерь строения K зависит от типа конструкции и изоляции помещения:

K Тип конструкции
3 — 4 Дом без теплоизоляции — упрощенная конструкция или конструкция из гофрированного металлического листа.
2 — 2,9 Дом с низкой теплоизоляцией — упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши.
1 — 1,9 Средняя теплоизоляция — стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей.
0,6 — 0,9 Высокая теплоизоляция — улучшенная конструкция, кирпичные стены с теплоизоляцией, небольшое число окон, утепленный пол, кровельный пирог с высококачественной теплоизоляцией.

Разница между температурой воздуха вне помещения и необходимой температурой внутри помещения ΔT определяется исходя из конкретных погодных условий и требуемого уровня комфорта в доме. Например, если температура снаружи -20 °C, а внутри планируется +20 °C, то ΔT = 40 °C.

Изменение температурных значений по сезонам

Нормы нагрева теплоносителя зависят от среднесуточных значений. Параметры будут отличаться по времени года. Например, конечная температура теплоносителя в сети ГВС должна составлять 60−75 °С. Поэтому зимой систему переключают на обратный трубопровод, чтобы исключить риск ожогов у пользователей. Летом сеть ГВС забирает воду из прямой трубы, так как нагрев не превышает 70 °С. Что касается теплоносителя в системе отопления, то он должен поддерживать параметры микроклимата в помещениях на комфортном уровне. Для жилых комнат оптимальная температура воздуха − 19-22 °С днем и 18-20 °С ночью. Чем холоднее на улице, тем горячее теплоноситель в трубах. Температурные значения в помещении измеряют около стены.

Изменение температурных значений по сезонам

Расчет количества радиаторов

Выбор радиаторов

Это очень важный момент, от которого будет зависеть оптимальный температурный режим внутри отапливаемых помещений. Существует стандартная величина разницы температуры радиаторов отопления и воздуха в комнате. Она равна 70С. То есть, если вам необходима температура внутри комнаты +20С, то температура батареи, установленной здесь, должна быть не ниже +90С. Как видите, все достаточно просто. Но теплоотдача у разных радиаторов, выполненных из разных материалов, отличается. Для общего расчета можно использовать понижающие или повышающие коэффициенты.

Технология заполнения: куда подавать теплоноситель

Необходимыми средствами являются емкость и насос, создающий требуемое давление жидкого теплоносителя. Вполне подойдут погружные типа «Гном» или «Малыш» (популярные у садоводов, использующих их для полива участков, расположенных выше уровней водоемов). Имеются свидетельства об успешном заполнении закрытых систем посредством ручных насосов – от используемых для опрыскивания защитными растворами огородных культур, до специализированных ручных насосов, применяемых для перекачки из бочек моторных топлив или жидких химических продуктов. Любую схему отопления можно успешно заполнить, контролируя давление по манометру.

Заполнение системы антифризом посредством погружного вибронасоса.

Первой операцией является выбор точки входа жидкости. Если напор, создаваемый насосом, поднимает жидкость до верха системы, следует подключаться в низшей точке котельной – патрубку подпитки теплоносителем, врезанному перед котлом в «обратку». Кроме входа подпитки необходим конструктивно отдельный выход слива (два разных узла системы). Первый оборудуется вентилем (шаровым краном) и обратным клапаном, второй – только вентилем (шаровым краном). Если низшая точка системы является штуцером слива воды из котла, то можно через него спустить/заполнить систему водой. Поскольку за котельным сливом (вообще за сливом) не устанавливается обратный клапан, любое выключение насоса повлечет вытекание закачанной жидкости – нужно быстро перекрывать кран перед штуцером.

Конструкция типового узла слива/подпитки.

Как рассчитать параметры циркуляционного насоса

В данной статье рассказывается о том, как рассчитать параметры циркуляционного насоса в отопительной системе, руководствуясь  при этом малым объемом технической информации об особенностях и характеристиках данной системы. Этот метод расчета применяется в основном для частных малоэтажных зданий.

Мы подготовили пример расчета, чтобы наглядно вам показать, что на самом деле произвести расчет важных параметров для определения оптимальных характеристик циркуляционного насоса намного легче, чем может показаться на первый взгляд.

Циркуляционный насос выбирается по двум основным характеристикам: H — напору, выраженному в метрах; Q — расходу, выраженному в м3/час.

Определение напора циркуляционного насоса

Насос должен создавать необходимое давление, чтобы жидкость могла преодолевать все препятствия в системе отопления и заполнять радиаторы теплоносителем.

При проектировании новой системы возможны точные расчеты с учетом сопротивления всех элементов нитки (труб, фитингов, арматуры и приборов); обычно необходимые сведения приводятся в паспортах на оборудование.

Если такой информации нет, можно использовать формулу:

Символ формулы Описание
R Потери давления в системе. Полученные опытным путем данные свидетельствуют, что сопротивление прямых участков трубы (R) составляет порядка от 50 до 150 Па/м. Там где используются, например, двухдюймовые трубы, что часто бывает в старых домах, потери давления меньше. Можно принимать в расчет значение 50 Па/м. 150 Па/м обычно в трубах меньшего диаметра.
L Длина труб в метрах всего контура отопления (подача и обратка), по которому циркулирует теплоноситель. Чтобы упростить вычисления можно взять размеры дома, они рассчитываются таким образом: (длина + широта + высота) * 2 .
ZF Дополнительные коэффициенты сопротивления в виде арматуры и фасонной части, которые имеют следующие значения:
  • 1,2 — смесителя/устройства, предотвращающего естественную циркуляцию;
  • если установка не оснащена ни терморегулирующим вентилем, ни смесителем, ZF = 1,3;
  • для контура с терморегулирующим вентилем ZF = 1,3 х 1,7 = 2,2;
  •  когда система включает оба прибора ZF = 1,3 х 1,7 х 1,2 = 2,6.
10 000 коэффициент для преобразования метров водного столба в Па
Читайте также:  Как сделать печь для отопления дома с водяным контуром

Расчет производительности циркуляционного насоса

Для того, чтобы вычислить производительность циркуляционного насоса Qpu, необходимо знать тепловую мощность Q, удельную теплоемкость теплоносителя Cw, его плотность p  и разность температур конструкции Δt .

Подача насоса в расчетной точке вычисляется при помощи следующей формулы:

Как рассчитать параметры циркуляционного насоса
Символ формулы Описание
Q Тепловой поток или тепловая мощность. В этом случае речь идет о необходимой тепловой нагрузке или имеющейся мощности котла, которые должны соответствовать поставленной задаче.
p Плотность теплоносителя. В данном случае можно принять ≈ 1 кг/л. (вода).
Cw Удельная теплоемкость. Считается как 1,16 Вт*ч/кг*К (вода).
Δt Разница температур Δt зависит от вида отопительной системы: Δt=20 °С для стандартных двухтрубных систем; Δt=10 °С для низкотемпературных отопительных систем и теплых полов.

Пример расчета

Руководствуясь данным примером, вы сможете достоверно разобраться с тем, как совершать расчеты, чтобы определить параметры циркуляционного насоса. Помимо этого, представленный ниже эскиз имеет все необходимые данные для расчета производительности и высоты подъема.

Эскиз для примера расчета

Посмотрев на эскиз можно определить следующие значения:

  • ширина – 15 м;
  • длина – 20 м;
  • высота – 12 м;
  • год постройки – 1990;
  • ZF = 2,2 (фитинги + клапан термостата);
  • потери давления – 120Па/м;
  • потери тепла – 80 кВт;
  • температуры в системе отопления – 75/55.

Расчет напора Н

  1. R = 120 Па/м;
  2. L = (15+20+12)*2=94 м
  3. ZF = 2.2

Расчет потока Qpu

  1. Q = 80 кВт
  2. p = 1 кг/л
  3. Cw = 1,16 (Вт*ч)/(кг*К)
  4. Δt = 75C-55C = 20К

Наиболее важные данные для определения оптимальных параметров циркуляционного насоса успешно рассчитаны. На следующем этапе пользуясь каталогом, или проконсультировавшись с продавцами в магазине, необходимо определить группу насосов, в параметры которых попадает необходимая  рабочая точка.

Расчет мощности системы отопления по объему жилья

Представим следующий способ расчета мощности системы отопления – он также является довольно простым и понятным, но при этом отличается более высокой точностью конечного результата. В данном случае основой для вычислений становится не площадь помещения, а его объем. Кроме того, в расчете учитывается количество окон и дверей в здании, средний уровень морозов снаружи. Представим небольшой пример применения подобного метода – имеется дом общей площадью 80 м2, комнаты в котором имеют высоту 3 м. Постройка располагается в Московской области. Всего есть 6 окон и 2 двери, выходящие наружу. Расчет мощности тепловой системы будет выглядеть так.                                                                                     «Как сделать автономное отопление в многоквартирном доме, Вы можете прочитать в нашей статье».

Шаг 1. Определяется объем здания. Это может быть сумма каждой отдельной комнаты либо общая цифра. В данном случае объем вычисляется так – 80*3=240 м3.

Шаг 2. Подсчитывается количество окон и количество дверей, выходящих на улицу. Возьмем данные из примера – 6 и 2 соответственно.

Шаг 3. Определяется коэффициент, зависящий от местности, в которой стоит дом и того, насколько там сильные морозы.

Таблица. Значения региональных коэффициентов для расчета мощности отопления по объему.

Attention: The internal data of table “104” is corrupted!

Расчет мощности системы отопления по объему жилья

Так как в примере речь идет о доме, построенном в Московской области, то региональный коэффициент будет иметь значение 1,2.

Расчет мощности системы отопления по объему жилья

Шаг 4. Для отдельно стоящих частных коттеджей определенное в первой операции значение объема здания умножается на 60. Делаем подсчет – 240*60=14 400.

Шаг 5. Затем результат вычисления предыдущего шага множится на региональный коэффициент: 14 400 * 1,2 = 17 280.

Шаг 6. Число окон в доме умножается на 100, число дверей, выходящих наружу – на 200. Результаты суммируются. Вычисления в примере выглядят следующим образом – 6*100 + 2*200 = 1000.

Читайте также:  Верный расчет мощности котла для отопления дома

Шаг 7. Цифры, полученные по итогам пятого и шестого шагов, суммируются: 17 280 + 1000 = 18 280 Вт. Это и есть мощность отопительной системы, необходимая для поддержания оптимальной температуры в здании при условиях, указанных выше.

Стоит понимать, что расчет системы отопления по объему также не является абсолютно точным – в вычислениях не уделяется внимание материалу стен и пола здания и их теплоизоляционным свойствам. Также не делается поправка на естественную вентиляцию, свойственную любому дому.

Расчет  количества секций радиаторов отопления- калькулятор

Укажите запрашиваемые данные и нажмите «РАССЧИТАТЬ ОБЪЕМ ТЕПЛОНОСИТЕЛЯ» . КОТЁЛ Объем теплообменника котла , литров (паспортная величина) . РАСШИРИТЕЛЬНЫЙ БАК Объем расширительного бака, литров . ПРИБОРЫ ИЛИ СИСТЕМЫ ТЕПЛООБМЕНА . Разборные, секционные радиаторы Тип радиатора: — чугунные МС-140 с межосевым 500 мм — чугунные МС-140 с межосевым 300 мм — чугунные ЧМ-2 с межосевым 500 мм — чугунные ЧМ-2 с межосевым 300 мм — алюминиевые с межосевым 500 мм — алюминиевые с межосевым 350 мм — биметаллические с межосевым 500 мм — биметаллические с межосевым 350 мм Общее количество секций . Неразборные радиаторы и конвекторы Объем прибора по паспорту Количество приборов Теплый пол — нет — есть Тип и диаметр трубы Общая длина контуров . ТРУБЫ КОНТУРА ОТОПЛЕНИЯ (подача + обратка) Стальные трубы ВГП Ø ½ «, метров Ø ¾ «, метров Ø 1 «, метров Ø 1¼ «, метров Ø 1½ «, метров Ø 2 «, метров Армированные полипропиленовые трубы Ø 20 мм, метров Ø 25 мм, метров Ø 32 мм, метров Ø 40 мм, метров Ø 50 мм, метров Металлопластиковые трубы Ø 20 мм, метров Ø 25 мм, метров Ø 32 мм, метров Ø 40 мм, метров . ДОПОЛНИТЕЛЬНЫЕ ПРИБОРЫ И УСТРОЙСТВА СИСТЕМЫ ОТОПЛЕНИЯ (теплоаккумулятор, гидрострелка, коллектор, теплобоменник и другие) Наличие дополнительных приборов и устройств: — нет — есть Суммарный объем дополнительных элементов системы

Видео — Мощность котла и емкость системы отопления

Фотографии по тексту для наглядности о сказанном

Фотографии по тексту для наглядности о сказанном

Потери напора жидкости на внезапном сужении

Потери напора при внезапном расширении труб

Фотографии по тексту для наглядности о сказанном

Расчет гидросопротивления в тепловой сети

Схема гидравлического расчета участка сети

Фотографии по тексту для наглядности о сказанном

Формулы расчета Д труб отопления

Фотографии по тексту для наглядности о сказанном

Выбор расширительного бака

Видео по теме

Фотографии по тексту для наглядности о сказанном

Таким образом, можно подвести итог, что гидравлический расчет тепловых сетей очень важный и ответственный этап проектирования систем теплоснабжения любого объекта от небольшого дачного домика до жилого квартала с десятками тысяч квадратных метров. Прежде всего, такой расчет помогает правильно выбрать все необходимое оборудование и запорно-регулировочную арматуру, чтобы обеспечить оптимальные характеристики работы тепловой сети.

Параметры раздающих элементов

Одной из деталей согревания жилища является стояк, через который теплоноситель приходит в батарею или радиатор из теплового узла. Нормы температуры теплоносителя в системе отопления требуют нагрева в стояке в зимнее время в диапазоне 70-90 °С. Фактически градусы зависят от выходных параметров ТЭЦ или котельной. В летнее время, когда горячая вода нужна только для стирки и душа, диапазон перемещается в интервал 40-60 °С.

Наблюдательные люди могут заметить, что в соседней квартире элементы обогрева горячее или холоднее, чем в его собственной.

Причина разницы температур стояка отопления заключается в способе раздачи ГВС.

В однотрубной конструкции носитель тепла может раздаваться:

Параметры раздающих элементов
  • сверху; тогда температура на верхних этажах выше, чем на нижних;
  • снизу, тогда картина меняется на противоположную – снизу горячее.

В двухтрубной системе градус одинаковый на всём протяжении, теоретически 90 °С на прямом и 70 °С на обратном направлении.

Термины и обозначения

В качестве примера будет рассматриваться методическая разработка «Роскоммунэнерго».

Термины и обозначения, которые будут использованы во время вычислений:

  • Т1 – теплоноситель от источника;
  • Т2 – обратное поступление воды;
  • Т3 – вход в здание;
  • Тнв – величина наружного воздуха;
  • Твн – воздух в помещении.

Стоит иметь в виду, что составление температурной диаграммы системы отопления следует начинать с выбора метода регулирования. Для этого необходимо знать отношение:

от

Согласно данной формуле:

  • – это среднее значение расхода тепла на ГВС (горячее водоснабжение) всех потребителей;
  • Qот – суммарная расчетная нагрузка на отопление потребителей теплоэнергии населенного пункта, для которого рассчитываем температурный график.

рассчитывается из формулы:

= Кч.

В этой формуле – это суммарная расчетная нагрузка на ГВС населенного пункта. Кч – это коэффициент часовой неравномерности, вообще правильно рассчитывать его на основе фактических данных. Если отношение от меньше чем 0,15, то следует применять центральное качественное регулирование по отопительной нагрузке. То есть применяется температурная диаграмма центрального качественного регулирования по отопительной нагрузке. В подавляющем большинстве случаев для пользователей центральной отопительной системы применяется именно такой график.